Panel data - 2 - simple example of pooled cross section across years

(Comments)

I will try to explore in a millennial way about Panel data, and believe me, statistics and mathematically combined into econometric is not as scary as it sounds before we are going to prepare your data in the panel format. It is worthed seeing the chapter from Wooldridge's book. Don't be scared! It's not as scary as it is. 

Intro

Many surveys of individuals, families, and firms are repeated at regular intervals, often each year. An example is the Current Population Survey (or CPS), which randomly samples households each year. If a random sample is drawn at each time period, pooling the resulting random samples gives us an independently pooled cross-section.

One reason for using independently pooled cross-sections is to increase the sample size. By pooling random samples drawn from the same population, we can get more precise estimators and test statistics with more power at different points in time. Pooling is helpful only in so far as the relationship between the dependent variable and at least some of the independent variables remain constant over time.

Using pooled cross-sections raises only minor statistical complications. Typically, to reflect that the population may have different distributions in different time periods, we allow the intercept to differ across periods, usually years. This is easily accomplished by including dummy variables for all but one year, where the earliest year in the sample is usually chosen as the base year. It is also possible that the error variance changes over time, something we discuss later.

Sometimes, the pattern of coefficients on the year dummy variables is itself of interest.

Example of the simple cross-section with the time that resembles panel data 

First, Stata offers a great resource when you want to practice the code. You can find the source here 

https://www.stata.com/links/examples-and-datasets/

See also: And let say we want to use some of the data from the book of Wooldridge, In chapter 10, https://stats.idre.ucla.edu/other/examples/eacspd/

The fertility topic from Wooldridge or this site in chapter 13

http://fmwww.bc.edu/gstat/examples/wooldridge/wooldridge13.html

Try this
Simple panel data regression with one subject

 For example, a demographer may be interested in the following question: After controlling for education, has fertility pattern among women over age 35 changed between 1972 and 1984? The following example illustrates how this question is answered using multiple regression analysis with year dummy variables.

The data set in the link below, which is similar to Sander (1992), comes from the National Opinion Research Center’s General Social Survey for the even years from 1972 to 1984, inclusively. We use these data to estimate a model explaining the total number of kids born to a woman (kids).

use http://fmwww.bc.edu/ec-p/data/wooldridge/fertil1
reg kids educ age agesq black east northcen west farm othrural town smcity y74 y76 y78 y80 y82 y84

One question of interest is:

After controlling for other observable factors, what has happened to fertility rates over time? The factors we control for are years of education, age, race, region of the country were living at age 16, and living environment at age 16.

The base year is 1972. The coefficients on the year dummy variables show a sharp drop in fertility in the early 1980s. For example, the coefficient on y82 implies that holding education, age, and other factors fixed; a woman had on average .52 fewer children, or about one-half a child, in 1982 than in 1972. This is a substantial drop: holding Educ, age, and the other factors fixed, 100 women in 1982 are predicted to have about 52 fewer children than 100 comparable women in 1972.

Since we control education, this drop is separate from the decline in fertility due to the increase in average education levels. (The average years of education are 12.2 for 1972 and 13.3 for 1984.) The coefficients on y82 and y84represent drops in infertility for reasons not captured in the explanatory variables. Given that the 1982 and 1984 year dummies are individually quite significant, it is not surprising that as a group, the year dummies are jointly very significant: the R-squared for the regression without the year dummies is .1019, and this leads to F6,1111 5 5.87 and p-value < 0.

  • Women with more education have fewer children, and the estimate is very statistical
  • Women with more education have fewer children, and the estimate is very statistically significant.
  • Other things being equal, 100 women with a college education will have about 

51 fewer children on average than 100 women with only a high school education: .128(4) 5 .512. Age has a diminishing effect on fertility. (The turning point in the quadratic is at about age 5 46, by which most women have finished having children.)

The model estimated assumes that each explanatory variable's effect, particularly education, has remained constant. This may or may not be true; you will be asked to explore this issue in Computer Exercise C1. Finally, there may be heteroskedasticity in the error term underlying the estimated equation. 

There is one interesting difference here: now, the error variance may change over time even if it does not change with the values of Educ, age, black, etc.

The heteroskedasticity-robust standard errors and test statistics are nevertheless valid. The Breusch-Pagan test would be obtained by regressing the squared OLS residuals on all of the independent variables in the table below, including the year dummies. (For the special case of the White statistic, the fitted values in kid and the squared fitted values are used as the independent variables, as always.) A weighted least-squares procedure should account for variances that possibly change over time. In the procedure discussed in Section 8.4, year dummies would be included in equation (8.32).

      Source |       SS       df       MS              Number of obs =    1129
-------------+------------------------------           F( 17,  1111) =    9.72
       Model |  399.610888    17  23.5065228           Prob > F      =  0.0000
    Residual |  2685.89841  1111  2.41755033           R-squared     =  0.1295
-------------+------------------------------           Adj R-squared =  0.1162
       Total |   3085.5093  1128  2.73538059           Root MSE      =  1.5548

------------------------------------------------------------------------------
        kids |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        educ |  -.1284268   .0183486    -7.00   0.000    -.1644286    -.092425
         age |   .5321346   .1383863     3.85   0.000     .2606065    .8036626
       agesq |   -.005804   .0015643    -3.71   0.000    -.0088733   -.0027347
       black |   1.075658   .1735356     6.20   0.000     .7351631    1.416152
        east |    .217324   .1327878     1.64   0.102    -.0432192    .4778672
    northcen |    .363114   .1208969     3.00   0.003      .125902    .6003261
        west |   .1976032   .1669134     1.18   0.237    -.1298978    .5251041
        farm |  -.0525575     .14719    -0.36   0.721    -.3413592    .2362443
    othrural |  -.1628537    .175442    -0.93   0.353    -.5070887    .1813814
        town |   .0843532    .124531     0.68   0.498    -.1599893    .3286957
      smcity |   .2118791    .160296     1.32   0.187    -.1026379    .5263961
         y74 |   .2681825    .172716     1.55   0.121    -.0707039    .6070689
         y76 |  -.0973795   .1790456    -0.54   0.587     -.448685    .2539261
         y78 |  -.0686665   .1816837    -0.38   0.706    -.4251483    .2878154
         y80 |  -.0713053   .1827707    -0.39   0.697      -.42992    .2873093
         y82 |  -.5224842   .1724361    -3.03   0.003    -.8608214    -.184147
         y84 |  -.5451661   .1745162    -3.12   0.002    -.8875846   -.2027477
       _cons |  -7.742457   3.051767    -2.54   0.011    -13.73033   -1.754579
------------------------------------------------------------------------------
test y74 y76 y78 y80 y82 y84

 ( 1)  y74 = 0.0
 ( 2)  y76 = 0.0
 ( 3)  y78 = 0.0
 ( 4)  y80 = 0.0
 ( 5)  y82 = 0.0
 ( 6)  y84 = 0.0

       F(  6,  1111) =    5.87
            Prob > F =    0.0000

reg kids educ age agesq black east northcen west farm othrural town smcity y74 y76 y78 y80 y82 y84

Thanks for keep following!

Feel got helped, support the blog by buying me a coffee 

Current rating: 3.8

Comments

Riddles

22nd Jul- 2020, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20 Oct- 2019, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20Aug- 2019, by: Editor in Chief
524 Shares 4 Comments
10Aug- 2019, by: Editor in Chief
424 Shares 4 Comments
Generic placeholder image
10Aug- 2015, by: Editor in Chief
424 Shares 4 Comments

More News  »

Elektabilitas cawapres 2024, Erick Thohir paling atas

Recent news

Jelang Pilpres 2024, sejumlah nama telah teridentifikasi dan mendapat dukungan publik. Tiga teratas capres sejauh ini adalah Anies Baswedan, Ganjar Pranowo, dan Prabowo Subianto. Ketiganya memang telah mengantongi dukungan dari beberapa partai politik. Namun, dukungan pada ketiganya tampak masih belum ajeg. Hal ini menunjukkan bahwa preferensi publik juga belum ajeg, masih rentan terhadap perkembangan situasi politik maupun kondisi lain.

read more
3 weeks, 4 days ago

Perbedaan pandangan Dr Soepomo, Muh Yamin, dan Soekarno terhadap UUD 45

Recent news

Sebelum negara Indonesia merdeka, terdapat berbagai organisasi seperti BPUPKI. Di BPUPKI sendiri ada beragam peristiwa bersejarah. Misalnya adalah lahirnya pandangan Mohammad Yamin, Soepomo, dan Ir. Soekarno terhadap negara merdeka.
Pandangan ini lahir pada Sidang BPUPKI I di tanggal 29 Mei sampai 1 Juni 1945. Nantinya, pandangan ini akan berpengaruh terhadap kehidupan bangsa dan negara Indonesia setelah merdeka

Pandangan Mohammad Yamin, Soepomo, dan Ir. Soekarno terhadap Negara Merdeka pada Sidang BPUPKI

Mengutip buku IPS Terpadu – Jilid 2B, Sri Pujiastuti, dkk (2007:3), BPUPKI adalah singkatan dari Badan Penyelidik Usaha-Usaha Persiapan Kemerdekaan Indonesia. BPUPKI lahir akibat janji PM Koiso untuk memerdekakan Indonesia agar Indonesia mau membantu Jepang melawan sekutu.
Seperti yang telah disinggung sebelumnya, terdapat berbagai hal yang terjadi selama BPUPKI terbentuk. Contohnya adalah lahirnya pandangan Mohammad Yamin, Soepomo, dan Ir. Soekarno terhadap negara merdeka pada Sidang BPUPKI I. Berikut penjelasannya:

1. Mohammad Yamin

Mohammad Yamin berpidato pada tanggal 29 Mei 1945, yakni pada hari pertama Sidang BPUPKI I. Dalam pidato tersebut, Mohammad Yamin mengemukakan bahwa Indonesia harus merdeka berdasarkan peradaban bangsa sendiri, buka meniru negara lainnya.
Selain itu, beliau juga mengatakan bahwa Indonesia yang akan dibentuk meruppakan negara rakyat dalam suatu republik. Negara ini dipimpin oleh kepala negara pilihan serta dijalankan oleh kementerian dan bertanggung jawab pada majelis musyawarah

2. Soepomo

Soepomo menyatakan pandangannya akan negara merdeka pada tanggal 31 Mei 1945. Beliau berpendapat mengenai konsep negara integralistik yang mempunyai beberapa ciri-ciri, yakni:
  • Negara merupakan pengejawantahan secara organik oleh warga negara

read more
4 weeks ago

Sepuluh fakta menarik tentang Jepang yang banyak orang belum tahu

Recent news

Berikut adalah 10 fakta menarik tentang Jepang yang mungkin tidak banyak diketahui orang:

read more
4 weeks, 1 day ago

Kumpulan rumus rumus fisika

Recent news

Rumus-rumus Fisika memang terkadang sulit dipahami. Butuh ketelitian dan kesabaran dalam mencerna setiap pembahasannya. Sobat notafraid yang mungkin berencana masuk IPA atau sudah masuk jurusan tersebut pasti merasakan hal seperti itu.

read more
1 month ago

Pemberi dividien terbesar di 2023

Recent news
1 month ago

Daftar kampus dengan akreditasi unggul 2023 di Indonesia

Recent news

Hi Notafraiders berencana kuliah di kampus swasta? Nah, data universitas swasta dengan akreditasi unggul ini bisa jadi salah satu pertimbangan memilih kampus.
Berdasarkan Peraturan BAN-PT Nomor 1 Tahun 2020, akreditasi perguruan tinggi yang sudah dilakukan dengan Instrumen Akreditasi Perguruan Tinggi (IAPT) 3.0 menggunakan jenis Unggul, Baik Sekali, dan Baik.

Sementara itu, akreditasi kampus yang masih menggunakan Instrumen Akreditasi 7 Standar memiliki jenis akreditasi A, B, dan C.


Akreditasi unggul berarti perguruan tinggi atau prodi sudah menetapkan dan memenuhi standar yang sangat jauh melampaui Standar Nasional Pendidikan Tinggi (SN-Dikti) secara kuantitatif dan kualitatif, atau secara vertikal dan horizontal.

Sedangkan akreditasi baik sekali berarti perguruan tinggi atau prodi sudah menetapkan dan memenuhi standar yang jauh melampaui SN-Dikti.

Berdasarkan data BAN-PT, berikut kampus swasta dengan akreditas unggul.

Universitas Swasta Akreditasi Unggul

read more
1 month, 2 weeks ago

Mengenal Galaksi

Recent news

Pengertian Galaksi dan Karakteristik serta Jenis-jenis Galaksi – Galaksi (Galaxy) adalah struktur astronomi raksasa yang terdiri dari kumpulan bintang, planet, gas, debu, dan materi gelap, yang disatukan bersama oleh gravitasi. Galaksi merupakan salah satu bentuk dasar dari struktur kosmos dan kemungkinan terdapat ratusan miliar atau bahkan triliunan galaksi di alam semesta yang luas ini.

read more
1 month, 2 weeks ago

Peran ilmu sains dalam pekerjaan manager

Recent news

Pengantar: Manajer adalah individu yang memiliki tanggung jawab mengatur, mengawasi, dan memimpin aktivitas organisasi atau tim untuk mencapai tujuan yang telah ditetapkan. Dalam melaksanakan tugasnya, manajer mengandalkan berbagai aspek ilmu sains yang mendukung pengambilan keputusan yang efektif, perencanaan strategis, dan pelaksanaan tugas-tugas manajemen. Dalam postingan blog ini, kita akan menjelaskan bagaimana ilmu sains berkontribusi dalam pekerjaan manajer dan mengapa pengetahuan ini penting dalam mencapai keberhasilan organisasi.

read more
1 month, 3 weeks ago

More News »

Generic placeholder image

Collaboratively administrate empowered markets via plug-and-play networks. Dynamically procrastinate B2C users after installed base benefits. Dramatically visualize customer directed convergence without