Panel data - 1 - an Intro

(Comments)

What is Panel data?

Panel data are also called longitudinal data or cross-sectional time-series data. These longitudinal data have “observations on the same units in several different time periods” (Kennedy, 2008: 281);

What construct Panel data?

A panel data set has multiple entities, each of which has repeated measurements at different time periods. Panel data may have individual (group) effect, time effect, or both, analyzed by fixed effect and/or random effect models. U.S. Census Bureau’s Census 2000 data at the state or county level are cross-sectional but not time-series, while annual sales figures of Apple Computer Inc. for the past 20 years are time series but not cross-sectional.

The cumulative Census data at the state level for the past 20 years are longitudinal. If annual sales data of Apple, IBM, LG, Siemens, Microsoft, Sony, and AT&T for the past 10 years are available, they are panel data. The National Longitudinal Survey of Labor Market Experience (NLS) and the Michigan Panel Study of Income Dynamics (PSID) data are cross-sectional and time-series, while the cumulative General Social Survey (GSS) and American National Election Studies (ANES) data are not in the sense that individual respondents vary across survey year.

The benefit of Panel data

As more and more panel data are available, many scholars, practitioners, and students have been interested in panel data modeling because these longitudinal data have more variability and allow exploring more issues than cross-sectional or time-series data alone (Kennedy, 2008: 282). Baltagi (2001) puts, “Panel data give more informative data, more variability, less collinearity among the variables, more degrees of freedom and more efficiency” (p.6). Given well-organized panel data, panel data models are definitely attractive and appealing since they provide ways of dealing with heterogeneity and examine fixed and/or random effects in the longitudinal data.

How to prepare panel data?

However, panel data modeling is not as easy as it sounds. A common misunderstanding is that fixed and/or random effect models should always be employed whenever your data are arranged in the panel data format. The problems of panel data modeling, by and large, come from 1) panel data themselves, 2) modeling process, and 3) interpretation and presentation of the result. Some studies analyze poorly organized panel data (in fact, they are not longitudinal in a strong econometric sense) and some others mechanically apply fixed and/or random effect models in haste without considering the relevance of such models. Careless researchers often fail to interpret the results correctly and to present them appropriately. 

References

Baltagi, Badi H. 2001. Econometric Analysis of Panel Data. Wiley, John & Sons.

Baltagi, Badi H., and Young-Jae Chang. 1994. "Incomplete Panels: A Comparative Study of Alternative Estimators for the Unbalanced One-way Error Component Regression Model." Journal of Econometrics, 62(2): 67-89.

Breusch, T. S., and A. R. Pagan. 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics." Review of Economic Studies, 47(1):239-253.

Cameron, A. Colin, and Pravin K. Trivedi. 2005. Microeconometrics: Methods and Applications. New York: Cambridge University Press.

Cameron, A. Colin, and Pravin K. Trivedi. 2009. Microeconometrics Using Stata. TX: Stata Press. Chow, Gregory C. 1960. "Tests of Equality Between Sets of Coefficients in Two Linear Regressions." Econometrica, 28 (3): 591–605. Regressions" Eti, 28 (3): 591605
Freund, Rudolf J., and Ramon C. Littell. 2000. SAS System for Regression, 3rd ed. Cary, NC: SAS Institute.

Fuller, Wayne A. and George E. Battese. 1973. "Transformations for Estimation of Linear Models with Nested-Error Structure." Journal of the American Statistical Association, 68(343) (September): 626-632. Fuller, Wayne A. and George E. Battese. 1974. "Estimation of Linear Models with CrossedError Structure." Journal of Econometrics, 2: 67-78.

Greene, William H. 2007. LIMDEP Version 9.0 Econometric Modeling Guide 1. Plainview, New York: Econometric Software. Greene, William H. 2008. Econometric Analysis, 6th ed. Upper Saddle River, NJ: Prentice Hall.

Hausman, J. A. 1978. "Specification Tests in Econometrics." Econometrica, 46(6):1251-1271. 1271
Kennedy, Peter. 2008. A Guide to Econometrics, 6th ed. Malden, MA: Blackwell Publishing SAS Institute. 2004.

SAS/ETS 9.1 User’s Guide. Cary, NC: SAS Institute. SAS Institute. 2004.

SAS/STAT 9.1 User’s Guide. Cary, NC: SAS Institute. Stata Press. 2010.

Stata Base Reference Manual, Release 11. College Station, TX: Stata Press. Stata Press. 2010.

Stata Longitudinal/Panel Data Reference Manual, Release 11. College Station, TX: Stata Press. Suits,

Daniel B. 1984. “Dummy Variables: Mechanics V. Interpretation.” Review of Economics & Statistics, 66 (1):177-180.

Swamy, P. A. V. B. 1970. “Efficient Inference in a Random Coefficient Regression Model.” Econometrica, 38: 311-323.

Uyar, Bulent, and Orhan Erdem. 1990. "Regression Procedures in SAS: Problems?" American Statistician, 44(4): 296-301. Problems?" AiSttitii, 44(4): 296301
Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nded. Cambridge, MA: MIT Press

Feel got helped, support the blog by buying me a coffee 

Currently unrated

Comments

Riddles

22nd Jul- 2020, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20 Oct- 2019, by: Editor in Chief
524 Shares 4 Comments
Generic placeholder image
20Aug- 2019, by: Editor in Chief
524 Shares 4 Comments
10Aug- 2019, by: Editor in Chief
424 Shares 4 Comments
Generic placeholder image
10Aug- 2015, by: Editor in Chief
424 Shares 4 Comments

More News  »

Potongan cerita pendek - kelas kosong masa SMA yang mengingatkanku pada dirinya

Recent news

Cerita ini fiksi belaka, kemiripan dengan kejadian sesungguhnya hanyalah kebetulan, atau dirimu memang ingin membuatnya kebetulan 😅

read more
1 month ago

Apa kepanjangan kwk di c plano pilkada

Recent news

Dalam konteks formulir C Plano pada Pilkada, singkatan “KWK” berarti “Kepala Wilayah Kerja”. Formulir C1-KWK Plano adalah catatan hasil penghitungan suara di Tempat Pemungutan Suara (TPS) yang digunakan dalam Pemilihan Kepala Daerah dan Wakil Kepala Daerah. Formulir ini mencatat secara rinci perolehan suara di setiap TPS dan merupakan bagian penting dalam proses rekapitulasi suara.

read more
1 month, 1 week ago

What is department of Government efficiency

Recent news

The **Department of Government Efficiency (DOGE)** is a proposed initiative by President-elect Donald Trump, aiming to streamline federal operations and reduce wasteful spending. Announced on November 12, 2024, the department is set to be co-led by tech entrepreneur Elon Musk and former Republican presidential candidate Vivek Ramaswamy.

read more
1 month, 1 week ago

Who Kyle Singler

Recent news

Kyle Singler is a former professional basketball player known for his collegiate success at Duke University and his tenure in the NBA.

read more
1 month, 1 week ago

Who is Pete Hegseth

Recent news

Pete Hegseth is an American television host, author, and Army National Guard officer, recently nominated by President-elect Donald Trump to serve as the United States Secretary of Defense.

read more
1 month, 1 week ago

Who is Anne Applebaum

Recent news

Anne Applebaum is a renowned journalist, historian, and author whose works delve into some of the most pressing and complex topics of the modern era. Her expertise lies in examining the intricacies of authoritarian regimes, the rise of populism, and the fragility of democratic institutions. Her Pulitzer Prize-winning book, "Gulag: A History," offers an in-depth exploration of the Soviet labor camp system, shedding light on the human suffering and ideological underpinnings of one of the 20th century’s most oppressive systems.

read more
1 month, 1 week ago

What is Plexity AI and how it can help us to see our civilization in the future?

Recent news

Plexity AI is a marvel of our times—a confluence of technological ingenuity and the boundless hunger for understanding. At its core, Plexity AI represents an advanced synthesis of artificial intelligence and machine learning, built not merely to mimic thought but to empower it. Unlike earlier iterations of AI, which focused on specialized tasks or data crunching, Plexity seems designed to operate as an expansive intellectual partner, capable of untangling the Gordian knots of complexity that define the modern era.

read more
1 month, 1 week ago

template for tanya jawab wifi

Recent news

Pertanyaan kali ini adalah 

read more
3 months, 2 weeks ago

More News »

Generic placeholder image

Collaboratively administrate empowered markets via plug-and-play networks. Dynamically procrastinate B2C users after installed base benefits. Dramatically visualize customer directed convergence without